Agenda

• Two weeks ago
 - The Class P
• Last week
 - The Class NP
• This week
 - More on the class NP
Announcement

- **Quiz tomorrow**
 - Big-O and small-o notation
 - Machine dependent complexity
 - Proving a problem is in P
 - NP definitions
Solving vs. verifying

• What if we can’t solve the problem in $O(n^k)$ time?
• Given a problem and a potential solution, can we verify the solution is correct?
Example

• The vertex cover problem
 - Given a graph $G = \langle V, E \rangle$ and a number k in \mathbb{N}, does there exist a subset V' of V such that
 - $|V'| = k$
 - For every $(u, v) \in E$, either $u \in V'$ or $v \in V'$
Vertex cover
The vertex cover problem

• There is no known polynomial solution to the vertex cover problem

• What if we have a potential solution
 - Can we verify it in $O(n^k)$ time?
Verifier

\(M = \text{"On input } <V,E,V'>\)

1. For each vertex \(v \) in \(V' \)
2. For each edge \((u,w) \) in \(E \)
3. If \(u = v \) or \(w=v \), mark \((u,w) \)
4. For each edge \((u,w) \) in \(E \)
5. If \((u,w) \) is not marked, reject
6. Accept"

- \(M \) accepts \(<V,E,V'> \) if and only if every edge in \(E \) has at least one endpoint in \(V' \)
- **Computational complexity?**
 - \(O(|V'| \times |E|) \)
The class NP

Definition: A verifier for a language A is an algorithm V, where
$A = \{ w | V \text{ accepts } <w,c> \text{ for some string } c \}$
The string c is called a certificate of membership in A.

Definition: NP is the class of languages that have polynomial-time verifiers.
Why NP?

- The N in NP stands for non-deterministic
- Any language in NP can be non-deterministically solved in polynomial time using the verifier
 - Guess the certificate
 - Verify
Is NP closed under complementation?

• For example, can we verify in polynomial time that a graph cannot be 3-colored?
 - Not obviously
 - It seems we need to check many 3-colorings before we can conclude that none exist

• The 3-coloring problem is in coNP
What we know

NP P coNP
What we don’t know

Are there any problems here?

NP

P

coNP