Agenda

• **Yesterday**
 - Reductions (Section 5.3)

• **Today**
 - Section 6.3
 - *We will not be covering section 6.4*
 - *I will discuss some basic issues of this section when covering chapter 7*
Announcement

• Revised homework assignment for next Tuesday
 - 5.4, 5.5, 5.7, 5.9, 6.3

• I will hold extended office hours next week
 - Tuesday & Wednesday 3:00 – 5:00
Mapping reducibility

Definition: Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f : \sum^* \to \sum^*$, where for every w,

$$w \in A \text{ iff } f(w) \in B$$
Using mapping reductions

- Test whether \(w \in A \) by finding a mapping reduction \(f \) from \(A \) to be and determining whether \(f(w) \in B \)

- Example
 - \(\text{ALL}_{\text{DFA}} = \{<A> \mid A \text{ is a DFA with } L(A)=\Sigma^*\} \)
 - Let \(D = \{B \mid B \text{ is a DFA}\} \) and let \(f:D \to D \)
 where \(f(A) = \bar{A} \)
 - Then \(A \in \text{ALL}_{\text{DFA}} \) iff \(\bar{A} \in \text{E}_{\text{DFA}} \)
 - Use membership of \(\bar{A} \) in \(\text{E}_{\text{DFA}} \) to determine membership of \(A \) in \(\text{ALL}_{\text{DFA}} \)
Mapping reductions & decidability

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let M be a decider for B and let f be a reduction from A to B.

Consider the following TM, N:

$N = \text{“On input } w:\text{”}$

1. Compute $f(w)$
2. Run M on $f(w)$ and report M's output"

Then N decides A
Mapping reductions & undecidability

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

• We have been using this corollary implicitly already
 - E.g., we showed $A_{TM} \leq_m HALT_{TM}$ and concluded $HALT_{TM}$ is undecidable
Example

• Let \(EV = \{<A>| A \text{ is a DFA all strings in } L(A) \text{ have an even number of 1's}\} \)
 - How can we prove \(EV \) is decidable using a mapping reduction?

• Consider the following DFA \(B \)

\[
L(B) = \{w \in \sum^* | \text{ w has an even number of 1's}\}
\]
Mapping reduction of L

- Use $\text{EQ}_{\text{DFA}} = \{<A,B> \mid A \text{ and } B \text{ are DFA's with } L(A) = L(B)\}$
- Mapping from L to EQ_{DFA}
 - $f(<A>) = <A, A \cap B>$
- A has an even number of 1's if and only if $L(A) = L(A \cap B)$
 - I.e., $A \in \text{EV}$ iff $f(A) \in \text{EQ}_{\text{DFA}}$
Reductions & TM-recognizability

Theorem: If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof: (same as decidable proof) Let M be a recognizer for B and let f be a reduction from A to B.

Consider the following TM, N:

$N =$ “On input w:
1. Compute $f(w)$
2. Run M on $f(w)$ and report M’s output”

Then N recognizes A
Reductions & non-TM-recognizability

Theorem: If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

Question: Which language have we seen that is not Turing-recognizable?

Answer: $\overline{A_{TM}}$
Proving non-Turing-recognizability

Question: If $A \leq_m U$ is $\bar{A} \leq_m \bar{U}$?

Answer: Yes since $x \in A$ iff $f(x) \in U$

(Use this fact when doing homework problem 5.5)

• How can we use the to prove non-Turing-recognizability?

• Prove $A_{TM} \leq_m U$ or prove $A_{TM} \leq_m \bar{U}$
Is mapping reducibility enough?

• Mapping reducibility does not completely capture our intuition about reductions
 - Example: \(A_{TM} \) and \(\overline{A_{TM}} \) are not mapping reducible
 - \(A_{TM} \) is Turing-recognizable and \(\overline{A_{TM}} \) isn’t
 - A solution to \(A_{TM} \) would also provide a solution to \(\overline{A_{TM}} \)
Oracle

• An oracle for a language B is an external device that is capable of reporting whether any string w is a member of B
 - We are not concerned how the oracle determines membership

• An oracle Turing machine is a Turing machine that can query an oracle
 - The machine M_B^B can query an oracle for the language B
Example

• An oracle Turing machine with an oracle for E_{QM} can decide E_{TM}

$T_{EQ-TM} = "On input <M>"

1. Create TM M_1 such that $L(M_1) = \emptyset$
 M_1 has a transition from start state to reject state for every element of \sum

2. Call the EQ_{TM} oracle on input $<M,M_2>$

3. If it accepts, accept; if it rejects, reject"

• T_{EQ-TM} decides E_{TM}

• E_{TM} is decidable relative to EQ_{TM}
Turing reducibility

- A language A is Turing reducible to a language B, written $A \leq_T B$, if A is decidable relative to B
- Previous slide shows E_{TM} is Turing reducible to EQ_{TM}
- Whenever A is mapping reducible to B, then A is Turing reducible to B
 - The function in the mapping reducibility could be replaced by an oracle
Applications

• If $A \leq_T B$ and B is decidable, then A is decidable
• If $A \leq_T B$ and A is undecidable, then B is undecidable
• If $A \leq_T B$ and B is Turing-recognizable, then A is Turing-recognizable
• If $A \leq_T B$ and A is non-Turing-recognizable, then B is non-Turing-recognizable
Happy studying!