Agenda

• **Yesterday**
 - Prove equivalence of deterministic and nondeterministic Turing machines

• **Today**
 - Enumerators
 - Definition of algorithm
Announcements

• **Quiz tomorrow**
 - High-level description of TM
 - Trace through a TM’s operation
 • Tape notation & configuration notation
 - High-level description of equivalences

• **Reminder: tutorial sessions are back**
 - Office hours return to normal
 • Tuesday 3:00 – 4:00
 • Wednesday 3:00 – 4:00
Enumerators

- Instead of reading an input and processing it, enumerators start with an empty tape and print out strings in Σ^*

\[M \rightarrow \text{Printer} \]

Printer:

- aaba
- bbcc
- aaaaabb

Output:

1 1 2 1 3 ~ ~ ~
Machine equivalence

Theorem: A language is Turing-recognizable if and only of some enumerator enumerates it.

Proof technique: Construction in each direction
TM accept enumerator language

• TM = “On input w:
 - Run enumerator E. Every time E prints a string, compare it to w.
 - If w appears in the output, accept.”
Enumerator accepts TM language

• Let s_1, s_2, s_3, \ldots be all the strings in Σ^*

• $E = \text{"Ignore the input.} \quad$
 - For $i = 1, 2, 3, \ldots$
 • Run M for i steps on each input s_1, s_2, \ldots, s_i
 • Whenever M accepts a string, print it
What is an algorithm?

• Intuitively, an algorithm is anything that can be simulated by a Turing machine
 - Many algorithms can be simulated by Turing machines
 - Inputs can be represented as strings
 • Graphs
 • Polynomials
 • Automata
 • Etc.
Example algorithm

• Depth-first walk-through of binary tree

• Which nodes do you visit, and in what order, when doing a depth-first search?
 - Visit each leaf node from left to right
 - Recursive algorithm
Depth-first walk-through

• Start at root
• Process left subtree (if one exists)
• Process right subtree (if one exists)
• Process how?
 - Print the node name
 - If there is a left subtree then
 • Process the left subtree
 • Print the node name again
 - If there is a right subtree then
 • Process the right subtree
 • Print the node name again
Example

1

2

4

8

4

2

5

9

5

2

1

3

6

10

6

3

7
Can a Turing machine do this?

• Input must be a string (not a tree)
 - Can we represent a tree with a string?
 - Yes.
String representation of a tree

```
1  2  3  4  5  6  7 8  #  #  9  10 #  # #  ~
```
Can a Turing machine do this?

• Input must be a string (not a tree)
 - Can we represent a tree with a string?
 - Yes

• How do we know which node(s) are children of current node
 - If node is \(k^{th} \) node at depth \(d \), it’s position in the string is \(2^d+k-1 \) and its children are at position \(2^{d+1}+2(k-1) \) and \(2^{d+1}+2k-1 \)
What about the output?

- Need to write out nodes in a particular order
 - Can we do this with a TM?
 - Yes. Add output tape
 - A TM can move left and right on the input tape writing to the output tape whenever appropriate
Decidability

• A language is decidable if some Turing machine decides it
• Not all languages are decidable
 – We will see examples of both decidable and undecidable languages
DFA acceptance problem

- Consider the language
 \[A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts the string } w \} \]

Theorem: \(A_{\text{DFA}} \) is a decidable language

Proof: Consider the following TM, \(M \)

\(M = \) “On input string \(\langle B, w \rangle \)

1. Simulate \(B \) on input \(w \)
2. If simulation ends in accept state, accept. Otherwise, reject.”
NFA acceptance problem

- Consider the language
 \[A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts the string } w \} \]

Theorem: \(A_{\text{NFA}} \) is a decidable language

Proof: Consider the following TM, \(N \)

\(N = \) “On input string \(\langle B, w \rangle \)

1. Convert \(B \) to a DFA \(C \)

2. Run TM M from previous slide on \(\langle C, w \rangle \)

3. If M accepts, accept. Otherwise, reject.”
RE acceptance problem

Consider the language

\[A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is an RE that generates the string } w \} \]

Theorem: \(A_{\text{REX}} \) is a decidable language

Proof: Consider the following TM, \(P \)

\(P = \) “On input string \(\langle R, w \rangle \)

1. **Convert \(R \) to a DFA \(C \) using algorithm discussed in class and in text**
2. **Run TM \(M \) from earlier slide on \(\langle C, w \rangle \)
3. **If \(M \) accepts, accept. Otherwise, reject.”
Emptiness testing problem

- Consider the language

\[E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \]

Theorem: \(E_{\text{DFA}} \) is a decidable language

Proof: Consider the following TM, \(T \)

\(T = "\text{On input string } \langle A \rangle \)

1. Mark the start state
2. Repeat until no new states get marked
 - Mark any state that has a transition coming into it from any state already marked
3. If no accept states are marked, accept. Otherwise, reject."