CSCI 2670
Introduction to Theory of Computing

October 20, 2004
Agenda

• Yesterday
 - Some decidable problems involving regular languages and finite automata
 - One undecidable language
 • EQ_{CFG}

• Today
 - More undecidable languages
 - Techniques for showing a language is not decidable
Announcements

• Quiz tomorrow
 - Enumerators, definition of algorithm, decidable languages

• No tutorial tomorrow
 - Extra office hours today (3:00 – 5:00)
Relationship of classes of languages

- Regular
- Context-free
- Decidable
- Turing-recognizable
Turing machine acceptance problem

- Consider the following language
 \[A_{TM} = \{<M,w> \mid M \text{ is a TM that accepts } w \} \]

Theorem: \(A_{TM} \) is Turing-recognizable

Theorem: \(A_{TM} \) is undecidable

Proof: The universal Turing machine recognizes, but does not decide, \(A_{TM} \)
The universal Turing machine

$U = \text{"On input } <M, w>, \text{ where } M \text{ is a TM and } w \text{ is a string:\"}

1. Simulate M on input w
2. If M ever enters its accept state, accept
3. If M ever enters its reject state, reject"
Why can’t U decide A_{TM}?

- Intuitively, if M never halts on w, then U never halts on $<M,w>$
- This is also known as the halting problem
 - Given a TM M and a string w, does M halt on input w?
 - Undecidable
- We will prove this more rigorously later
 - Need some new tools for proving properties of languages
Comparing the size of infinite sets

• Given two infinite sets A and B, is there any way of determining if $|A|>|B|$?
 - Yes!

• Diagonalization
Functional correspondence

• Let f be a function from A to B

• f is called **one-to-one** if ...
 - $f(a) \neq f(b)$ whenever $a \neq b$

• f is called **onto** if ...
 - For every $b \in B$, there is some $a \in A$ such that $f(a) = f(b)$

• f is called a **correspondence** if it is one-to-one and onto
 - A correspondence is a way to pair elements of the two sets
Example correspondence

- Consider $f: \mathbb{Z}^* \rightarrow P$, where $\mathbb{Z}^* = \{0,1,2,...\}$ and $P = \{\text{positive squares}\}$
 - $f(x) = (x+1)^2$

- Is f one-to-one?
 - Yes

- Is f onto?
 - Yes

- Therefore $|\mathbb{Z}| = |P|$
Countable sets

- Let $N = \{1, 2, 3, \ldots\}$ be the set of natural numbers
- The set A is countable if ...
 - A is finite, or
 - $|A| = |N|$
- Some example of countable sets
 - Integers
 - $\{x \mid x \in \mathbb{Z} \text{ and } x = 1 \pmod{3}\}$
The positive rational numbers

- Is $Q = \{m/n \mid m, n \in \mathbb{N}\}$ countable?
 - Yes!

<table>
<thead>
<tr>
<th>1/1</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>1/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>2/2</td>
<td>2/3</td>
<td>2/4</td>
<td>2/5</td>
</tr>
<tr>
<td>3/1</td>
<td>3/2</td>
<td>3/3</td>
<td>3/4</td>
<td>3/5</td>
</tr>
<tr>
<td>4/1</td>
<td>4/2</td>
<td>4/3</td>
<td>4/4</td>
<td>4/5</td>
</tr>
<tr>
<td>5/1</td>
<td>5/2</td>
<td>5/3</td>
<td>5/4</td>
<td>5/5</td>
</tr>
</tbody>
</table>
The real numbers

• Is \mathbb{R}^+ (the set of positive real numbers) countable?
 - No!

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.56439...$</td>
</tr>
<tr>
<td>2</td>
<td>$3.23891...$</td>
</tr>
<tr>
<td>3</td>
<td>$7.42210...$</td>
</tr>
<tr>
<td>4</td>
<td>$2.22266...$</td>
</tr>
<tr>
<td>5</td>
<td>$0.16982...$</td>
</tr>
</tbody>
</table>

$X = 4.1337...$

Diagonalization