Agenda

• **Last week**
 - Decidability of languages involving DFA’s & CFG’s
 - Non-decidability of the Turing machine acceptance problem A_{TM}

• **Today**
 - Revisit the A_{TM} proof
 - Finish Chapter 4
 - Problems

• **Tomorrow**
 - Begin Chapter 5 (pp. 171 - 176)
Announcements

• Homework due next Tuesday (11/2)
 - 4.4, 4.8, 5.1, 5.2, 5.13

• No quiz this week
 - Quiz next Tuesday

• No tutorials this week -- extra office hours instead
 - Tuesday & Wednesday 3:00 – 5:00
 - Or by appointment
Undecidability of A_{TM}

Theorem: A_{TM} is undecidable

Proof: (By contradiction) Assume A_{TM} is decidable and let H be a decider for A_{TM}

\[
H(<M,w>) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]
Proof (cont.)

• Consider the TM D that submits the string $<M>$ as input to the TM M

$D = \text{"On input } <M>, \text{ where } M \text{ is a TM:} $

1. Run H on input $<M,<M>>$
2. If H accepts $<M,<M>>$, reject
3. If H rejects $<M,<M>>$, accept"

 ➢ Since H is a decider, it must accept or reject
 ➢ Therefore, D is a decider as well
 ➢ D is a diagonalizing TM
Proof (cont.)

• What happens if D’s input is $<D>$?

$D(<D>) = \begin{cases}
\text{reject} & \text{if } D \text{ accepts } <D> \\
\text{accept} & \text{if } D \text{ does not accept } <D>
\end{cases}$

• D cannot exist!
• Therefore, H cannot exist – i.e., A_{TM} is undecidable
Recap

• **Assume H decides A_{TM}**
 - $H(<M, w>) = \text{accept}$ if TM M accepts w, reject otherwise

• **Define D using H**
 - $D(<M>)$ returns opposite of $H(<M, <M>>)$

• **Consider D(<D>)**
 - D accepts <D> if and only if D rejects <D>
Apply this method to A_{DFA}

- Assume H decides A_{DFA}
 - $H(<A, w>) = \text{accept}$ if DFA A accepts w, \text{reject} otherwise

- Define D using H
 - $D(<A>)$ returns opposite of $H(<A, <A>>) $

- Consider $D(<D>)$
 - D only accepts DFA’s as input ... D is a TM
 - Method does not apply
Apply this method to A_{TM-D}

• Assume H decides A_{TM-D}
 - $H(<M,w>) = \text{accept}$ if decider TM M accepts w, reject otherwise

• Problem
 - What if M is not a decider and just a regular TM?
 - How can we test our input?

• A_{TM-D} is not decidable
Co-Turing recognizable

Definition: A language A is co-Turing-recognizable if \overline{A} is Turing-recognizable.

Example:

$E_{\text{DFA}} = \{<A> \mid A \text{ is a DFA and } L(A) = \emptyset\}$

$E_{\text{DFA}} = \{S \mid S \text{ does not describe a DFA or } S \text{ describes a DFA with a non-empty language}\}$

- How would we decide this language?
Decidability and recognizability

Theorem: The language A is decidable if and only if it is both Turing-recognizable and co-Turing-recognizable.

Proof: In two parts

- If A is decidable then A and \bar{A} are Turing-recognizable.
 - Follows from definitions

- If A and \bar{A} are Turing-recognizable then A is decidable.
Decider for A

• Assume M_1 recognizes A and M_2 recognizes \overline{A}

• Consider the following TM

$M = \text{“On input } w:\text{”}$

1. Run M_1 and M_2 on input w in parallel
2. If M_1 accepts, accept; if M_2 accepts, reject"

• M must halt on w because at least one of the recognizers must halt on w

- If $w \in A$, M_1 must halt; otherwise, M_2 must halt
Corollary

• A_{TM} is not Turing-recognizable

Proof: A_{TM} is Turing-recognizable, but not decidable. By previous theorem, A_{TM} cannot be co-Turing-recognizable.
Proving decidability of L

• Create a TM that decides L
• Your TM may invoke another TM that decides a language you know is decidable
Languages we know are decidable

<table>
<thead>
<tr>
<th>Language</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{DFA}</td>
<td>$<D,w>$, D is a DFA, w is a string</td>
</tr>
<tr>
<td>A_{NFA}</td>
<td>$<N,w>$, N is an NFA, w is a string</td>
</tr>
<tr>
<td>A_{REX}</td>
<td>$<R,w>$, R is an RE, w is a string</td>
</tr>
<tr>
<td>E_{DFA}</td>
<td>$<D>$, D is a DFA</td>
</tr>
<tr>
<td>EQ_{DFA}</td>
<td>$<C,D>$, C and D are both DFA’s</td>
</tr>
<tr>
<td>A_{CFG}</td>
<td>$<G,w>$, G is a CFG, w is a string</td>
</tr>
<tr>
<td>E_{CFG}</td>
<td>$<G>$, G is a CFG</td>
</tr>
<tr>
<td>$L(G)$</td>
<td>G is a CFG</td>
</tr>
</tbody>
</table>
Some decidable languages

- $F_{DFA} = \{ \langle A \rangle \mid A$ is a DFA and $L(A)$ is finite $\}$
- PRIME = $\{ n \mid n$ is a prime number $\}$
- CONN = $\{ \langle G \rangle \mid G$ is a connected graph $\}$
- $L_{10DFA} = \{ D \mid D$ is a DFA that accepts every string w with $|w| = 10 \}$
- INT$_{CFG} = \{ \langle G_1, G_2, w \rangle \mid G_1$ and G_2 are CFG's and w is accepted by both $\}$
- INTL$_{CFG} = L(G_1 \cap G_2)$, where G_1 and G_2 are CFG's
Group project 1

\[F_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is finite} \} \]
Group project 2

\[\text{PRIME} = \{ n \mid n \text{ is a prime number} \} \]
Group project 3

$\text{CONN} = \{<G> \mid G \text{ is a connected graph}\}$
Group project 4

$L_{10}^{DFA} = \{D \mid D \text{ is a DFA that accepts every string } w \text{ with } |w| = 10\}$
INT_{CFG} = \{<G_1, G_2, w> | G_1 and G_2 are CFG's and w is accepted by both\}
Group project 6

\[\text{INTL}_{\text{CFG}} = L(G_1 \cap G_2), \text{ where } G_1 \text{ and } G_2 \text{ are CFG's} \]