(1) Consider the 3-tape Turing machine shown below.

```
0 1 ~ ~ ~ ~ ~ ~
```

```
a a a ~ ~ ~ ~ ~
```

```
a b ~ ~ ~ ~ ~ ~
```

a. (2 points) Draw the corresponding 1-tape Turing machine using methods described in class and in the book.

```
# 0 1 #a a a #a b # ~ ~ ~
```

b. (3 points) Assume the tape action on this configuration is (x,c,y),(L,R,R). What will the TM you drew in part a look like after implementing this step.

```
# x i #a a c ~ # y b # ~ ~
```
(2) (5 points) Let \(L = \{ ww^R \mid w \in \{0,1,\}^* \} \). Describe a Turing machine that decides \(L \). You may use any methods discussed in class or the text.

Use a 2-tape Turing machine
1. Check if the string is even. If not reject.
2. Copy \(w \) to the second tape.
3. Position first tape head at beginning of string and second tape head at end of string.
4. Compare the symbols one at a time. If they ever do not match, reject.
5. If the end of the string on tape 1 is reached, accept.