(1) Claim: Given any alphabet Σ, the language Σ^* is countable.
 a. (2 points) Formally explain what it means for Σ^* to be countable.

 The set Σ^* is countable if (1) the size of the set is finite or (2) the size is the same as the size of the natural numbers, \mathbb{N}. Since Σ^* is an infinite set, you can determine that it is the same size as \mathbb{N} by finding a correspondence – i.e., a function that is one-to-one and onto – between \mathbb{N} and Σ^*.

 b. (3 points) Prove this claim is true.

 List the strings of Σ^* in “alphabetical” order starting with the shortest strings and working toward longer strings. Thus, the first string in the list will have length 0, then next n strings in the list will have length 1, then next n^2 strings will have length 2, and so on. Define the function f so that $f(i) = \text{the } i^{\text{th}} \text{ string in the list}$. This function is clearly one-to-one and onto.
Consider the language NOHALT_TM. This language is undecidable.

a. (2 points) Explain how you would prove this is an undecidable language using the fact that A_TM is known to be undecidable.

Assume NOHALT_TM is decidable and is decided by Turing machine M. Then create another Turing machine S that calls M and decides the language A_TM. Since A_TM is known to be undecidable, conclude that there is no M that decides NOHALT_TM.

b. (3 points) Using the strategy you described in part a, prove NOHALT_TM is undecidable.

Assume NOHALT_TM is decided by Turing machine N—i.e., N accepts all strings $<M,w>$ where M is a Turing machine that does not halt when M runs on input string w and N rejects all other inputs. Consider the following Turing machine S.

$S = \text{“On input } <M,w>\text{ “}$
$\quad \text{Run } N \text{ on input } <M,w>$
$\quad \text{If } N \text{ rejects, then accept}$
$\quad \text{If } N \text{ accepts, then run } M \text{ on } w \text{ and return the result}$
$\quad \text{(accept if } M \text{ accepts } w \text{ and reject if } M \text{ rejects } w)$

The Turing machine S decides the language A_TM, which is undecidable. This is a contradiction. Therefore, NOHALT_TM must be undecidable.