5.4 No. For example, consider \(A = \{0^n1^n \mid n = 0, 1, 2, 3, \ldots \} \) and let \(f \) be the function that maps \(0^n1^n \) to \(1^n \) and maps all other string to -1. Then \(f \) is a mapping reduction from \(A \) to \(1^* \), which is regular even though \(A \) is not regular.

5.5 Show that \(A_{TM} \) is not mapping reducible to \(E_{TM} \). I will be using the \(\neg \) symbol to indicate complement instead of drawing a line over the language. We know that \(A_{TM} \) is Turing recognizable, but not co-Turing recognizable. The TM below recognizes \(\neg E_{TM} \), so \(E_{TM} \) is co-Turing recognizable.

\[
M = \text{"On input } <M> \text{, where } M \text{ is a TM}
1. \text{For each } i = 1, 2, 3, \ldots
2. \text{Run } M \text{ on all strings of length } i \text{ for } i \text{ steps}
3. \text{If any string is accepted, accept"}
\]
This Turing machine will accept any Turing machine whose language is non-empty.

Now assume \(A_{TM} \) is mapping reducible to \(E_{TM} \). Then \(\neg A_{TM} \) is mapping reducible to \(\neg E_{TM} \). But, \(\neg E_{TM} \) is Turing recognizable and \(\neg A_{TM} \) is not, which contradicts Theorem 5.22. This is a contradiction. Therefore, \(A_{TM} \) is not mapping reducible to \(E_{TM} \).

5.7 \(A \leq_m \neg A \) implies \(\neg A \leq_m A \). By Theorem 5.16, we can conclude that \(\neg A \) is Turing recognizable since we know \(A \) is Turing recognizable. By Theorem 4.16, we can conclude \(A \) is decidable since it is both TR and co-TR.

5.3 Let \(A \) be any Turing recognizable language and let \(M \) be a Turing machine such that \(L(M) = A \). Let \(f \) be the function that maps any string \(w \) to the string \(<M.w> \). Then \(w \) is in \(A \) if and only if \(f(w) \) is in \(A_{TM} \) – i.e., \(f \) is a mapping reduction from \(A \) to \(A_{TM} \).

6.3 Since \(A \leq_T B \), there is a Turing machine \(M_1 \) that calls an oracle for \(B \) and decides \(A \). Similarly, since \(B \leq_T C \), there is a Turing machine \(M_2 \) that calls an oracle for \(C \) and decides \(B \). Now, consider the Turing machine \(M \) that does exactly what \(M_1 \) does except instead of calling the oracle for \(B \), it calls \(M_2 \). Since \(M_2 \) decides \(B \), it will give the same answer as the oracle did, so \(M \) will decide \(A \). Also, \(M_2 \) uses an oracle for \(C \), so \(M \) also uses and oracle for \(C \) to decide \(A \). Therefore, \(A \leq_T C \).